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In this paper the development of the method presented in [l] is carried out with application 

to two types of integral equations encountered in mathematical physics in the investigation 
of many mixed problems with circular separation line of boundary conditions and in the in- 
vestigation of plane mixed problems. 

The algorithm is given for reducing these integral equations to solution of equivalent 
infinite linear algebraic systems. It is proved that the resulting infinite systems are quasi 
completely regular for sufficiently large values of dimensionless parameter X which enters 
into the systems. It is shown that reduction (truncation) of infinite systems results in finite 
systems of linear algebraic equations with almost triangular matrices. The last circumstance 
simplifies considerably the solution of these finite systems after which the solution of in- 
itial integral equations is found from simple equations. For given accuracy of the approxi- 

mate solution and decrease of parameter x the number of equations in reduced systems in- 
creases. 

As an example the solution is presented for the axisymmetric problem of a die acting on 
an elastic layer lying without friction on a rigid foundation. 

1. Basic integral equation of mixed problems with circular sepa- 
ration line of boundary conditions; general form of solution of this 
equation. The following integral Eq. is examined 

Here l,(z) is the Bessel function. Let us assume that function L(u) satisfies the follow- 

ing properties: 

L (u) 4 1 + 0 (e-‘“) for u+w (v > 01, L (u) = 0 (u) for IL -* 0 (1.2) 

for all u E (0 , 00) the function L(U) is continuous together with all derivatives. 
To find solutions of integral Eq. (l.l), it is sufficient to learn how to solve the simpler 

integral Eq. 

In fact we can prove that if the general solution of differential Eq. 

rnA? (g) = f (r) (A=+&) (1.4) 
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which is determined with accuracy to n arbitrary constants, is taken as function g(r) in Eq. 

(1.3) and if subsequently the solution $I), which for p= 1 becomes zero together with all 

its derivatives to the order of (n - 1) included, is determined, for the integral equation 

(1.3) then the solution q.(p) of the integral Eq. (1.1) is determined from Eq. 

a (P) = PA n (9) 0.5) 

We note that all arbitrary constants entering into the function g(r) found from Eq. (1.4) 
are determined from the following conditions when the indicated algorithm is satisfied: 

t#(k) (1) = 0 (k = 0,1, ,‘.( R - 1) (1.8) 

&I the basis of what was stated, in this manner, everything following will be devoted 

only to a study of integral Eq. (1.3). Utilizing integral [2] 

(4.7) 

we rewrite the integral Eq. (1.3) in the form 

Here and in (1.7) K(x) is the complete elliptic integral of the first kind. Based on pro- 

perties (1.2) of function L(u) it is easy to show that the even function F(u, V) is continuous 

together with all its dekvatives with respect to all variables in the square - ~0 < O,< @, V) 
<DO. 

We shall seek the solution t+%(p) of Eq. (1.8) in the class L (St) of absolutely summable 

functions in the circle S,(p,< l), then for h+ m the integral Eq. (1.8) degenerates into the 

following: 

(f.9) 

As is known, the axisymmetric contact problem of an elastic half-space is reduced to 
such an equation. 

Many authors found the solution of integral Eq. (1.9) in closed form by different methods. 

Here in our opinion the simplest method of solving integral Eq. (1.9) will be shown, and 
subsequently an investigation of the structure and differential properties of function I,/J~(~) 

will be carried out. 

Utili.sing (l.?), the integral Eq. (1.9) is reduced to its equivalent conjugate integral Eq. 

co co 

s 
Yo (u) Jo (ur) u du = 0 P > 1); !i 

YO (4 JO (ur) du = g fir) (r < 1) (1.10) 

0 0 

where 

~(r)=~Yo(.)J,(ur)u~u for r < 1 (1.11) 

0 

The first relationship (1.10) is multiplied by r(rz - t*)-Hdr and integrated with respect 

to r from t to 00, the second relationship (1.10) is multiplied term-by-term by rft* - rZ)-Y,dr 

and integrated with respect to r from 0 to t. Then having utilized Eqs. 
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(1.12) 

the following conjugate integral Eq. is obtained: 

cc co t 

c . 
!I’,, (y) cos yt dy = 0 (t > 1); \ (t 6 1) (1.13) 

‘0 
, 
0 

Now the function I$* (t) is introduced into the examination. This function is connected 
to Y,(u) through relationships 

03 1 c 2 1 

Yo(u)cosutd~= ‘PO (u) -= h 

s 
9, (z) cos UT dt (1.14) 

h 0 

Differentiating the second Eq. (1.13) term-by-term with respect to t, we find 

(1.15) 

We shall now establish the relationship between 1$u(r) and ;? * (t). Substituting Expres- 

sion To(u) in the form (1.14) into (1.11) and utilizing the integral [2: 

we obtain 

(1.16) 

(1.17) 

Thus Eqs. (1.15) and (1.17) give the solution of the integral Eq. (1.9). We can show, but 
we shall not dwell on it here in detail, that this solution has a meaning(*) at least for 

g(r)EHo(St), a > ‘2. 

In the following it will he assumed that g”(r) is bounded when r E [S t]. In this case we 

obtain from (1.15) without difficulty 

(1.18) 

Theorem 1. If g”(r) is bounded, then r/f* ‘(t) E HK (S,). From the boundedness of 

g”(r) in the circle St it follows that lg’(r)/ 6 Cr for all r E St. Then on the basis of (1.18) 

t 

ld*‘vIGw+c’)~ V&2 c =Dt (tE&) (1.19) 

It remains to be shown that 

$,” (t) E H”’ (S1-c) (1.20) 

where S r_ E is the circle with unit radius with e-region of point t = 0 excluded. We note 

that condition (1.20) will be fulfilled if the stronger statement t/~*‘(t)EHs (e, 1) is proved, 

i.e. 

*) This indicates that (f(P) - f(Q)1 \< AR =pQ (RpQ is the distance between points P and Q) 

for any P and Q E St. 
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1~\1*‘(t)-~*‘(7)1~RlI--l’ip (1.21) 

for all t and 7 E [a, 11. 
For the first integral in (1.18) the statement made is obvious. Let us examine the second 

integral in more detail. We estimate the modulus of difference (t > 7). 

(1.22) 

Now we estimate the first integral of the right part of (1.22). Utilizing the obvious iden- 
tity 

(‘3 - ,zp = 2 O3 (28 - $)!I (r” 

$&=o (2n)f! 
_ $)” (r” _ ,r)-(n+%) 

we rewrite it in the form 

The second integral of the right of (1.19) is estimated without difficulty 

On the basis of previous proofs we rewrite Eq. (1.17) in the form 

1 

1 

Theorem 2. If g”(r) is bounded, then $o(r) has the form 

*o (4 = 0 (r)(i - r ) 2 -l/z 

(1.25) 

(l.26) 

(1.27) 

where dr)E H% (S,), i.e. &(r) E L(Sl). 
The procedure of proof is analogous to Theorem I. At first it is shown that [o(r) - o(O)1 

6 ET and then o(r) E HH( E, 1). Let us formulate another more general theorem. 
Theorem 3. If function g(r) is such that its n + 2 derivative is bounded for r ElS,l 

then function $0(r) has the form (1.27), where ~ti(~)fr) E Hs(S,). The proof is carried out 
analogously to what was presented above. 

We shall now seek the solution of Eq. (1.8) from the class L(S,) in the form 

11, (P) = $0 (P) + 91(P) (1.38) 

where &(p)is the solution of integral Eq. (1.9) determined by relationships (1.15) and (1.17). 
For the correction function $,(p) we obtain the integral Eq. 
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We note that by virtue of properties of function F(p, V) and condition t/r(p) E L(S,), or 
by taking into acconnt the Theorem 2 d,(p) 6% ,!,(St), th e 
Eq. (1.29), as function of r E [St] 

entire right side of the integral 
is continuous with all derivatives. 

Then on the basis of Theorem 3 we can conclude that for any value A E (0, co) the gen- 
eral solution of the integral Eq. (1.29), if it exists in &(S,f, has the form 

91 (r) = a (rf (1 - rZ) 
J/L’ (1.30) 

where Q(r) with all the derivatives is a continuous function for r E[S,]. 
Thus, to find the general solution of the integral Eq. (St), it is necessary to find func- 

tion Q(r). Section 2 will be devoted to this subject. 

2. Reduction of integral Eq. f 1.29) to solution of an infinite SYS- 
tern of linear algebraic equations. Let us represent the function SF b, Y) of the 
type (1.8) in the form of the following double series with respect to even Legendre poly- 
nomiais 

F(+,+)=Si - - eii (h) P,, (1’1 -- rn) P,, (1/1 - p) (2.1) 

ia0 j=O 

Functions g*(r) and n(r) which enter into Eqs. (1.29) and (1.30) are afso expanded in 
series (*I 

g. (r) = fj nj*PaJi(V1 - r2), 
60 

Q(r) = f$ SiP2i(T/1 - r2) 
i=O 

(2.2) 

By virtue of properties of functions F&, v), g*(r) and Cl(r) pointed out in Section I, 
series (2.1) and (2.2) converge uniformly to F(B, V) with respect to all variab’tes (r, p)ffO, 
I] and arbitrary values of parameter X G (3, m) and to d (rf and R(r) for all r E S,, res- 
pectively. 

Utilizing the known orthogonality property of Legendre polynomials (21 

1 

c -_ - xdx 

b 
pzi ( 7/i - %‘) PC& (v/1 - X’) 

0 

y-1-_= 
(i#ii) 

(4i + 1)-t (i = i) 
(2.3) 

we obtain the following expression for coefficients ql (A) of series (2.1) G4) 

e 
xy dx dy 

v/(1 -xy(l--Yy 

Now substituting into (2.4) Expression F(C1, V) of’the form (1.8) and utilizing the inte- 
gral C 21 

we obtain the other Eq. for e,,(h): 
(2.8) 

*) We note that Legendre polynomials for findin 
similar to (1.3) were also utilized in paper [3 I 

approximate solutions of integral equations 
. The main advantage of the approach presen- 

ted in this Section is in our opinion the representation of F@, Y) in the form (2.2) 
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We shall proceed to the determination of coefficients R, *. Utilizing the second Eq.(l.29) 
and (2.1) we find 

Ri* = i ets (‘) ‘yn> Y =“-;‘$ (p)P 
n i-l 0 2n 

(1/1-_pdp (2.7) 

n=o 0 

The integral (2.7) is estimated using the following artificial step. Both parts of integral 
Eq. (1.9) are multiplied term-by-term by 

r (1 - r2)-‘/2 P,, (1/l - r2) dr 

and integration is performed with respect to r from zero to one. Then rearranging integrals 
in the left part of the obtained relationship and utilizing Eq. [3] 

we obtain for integrals \kn following Expressions 
1 

4 [(Dt)!!]? Rn 
Yn = n” [(an - I)!!]” (4n-tl) 9 Rn=(4s+i) g(r)P2,(Vl-rrf)~~s c 

(2.8) 
b 

We note that quantities R, are coefficients of the expansion of function g(r) into a series 
with respect to Legendre poIynomials of the form (2.2). 

Finally we obtain relationships for determination of coefficients 8, in the second Eq. 
(2.2). Substituting functions $t (p), g ( ) * r and F(u) v) in the form (1.30), (2.2) and (2.1) into 
the integral Eq. (1.29) and computing integrals from Eqs. (2.3) and (2.8) we obtain a rela- 
tionship which in its left and right part contains series in Legendre polynomials. Equating 
coefficients of both parts for polynomials of the same number, we obtain an infinite system 
of linear algebraic equations for determination of S, 

co 

Ril + ?_ T? S _ eik (‘) 
3t LJ k4k+1 

(i = 0, 1, . . ., oo) (2.10) 
li=o 

3. Analysis of infinite system (2.10). Let us rewrite system (2.10) in a 
more convenient form 

Here 

a, 

xi = 2 ‘ik”k + Rie (i = 0, 1, . . ., 00) (3.1) 
h=O 

I. = _3t_ [(Zi - 1)!!12 4 

2 [(2i)!!]s ‘it 
a =- [GwlP e,= 

z mn 36 [(an - l)!!la (4n + 1) 

co 

= (& + 1) (ti)!! (2s - l)!! (2n)!!(2m-- s [ 1 - L (u)] JBm+*,* (T) J2n+‘,n (F) g (3.2) 
0 

Now let us find asymptotic equations for coefficients a,,,” of the form (3.2) for large and 
small values of parameter A. 

Making use of a known representation I,(z) in the form of a series in powers of z we ob- 
tain for amn when x + m the following Expression: 

2 (2n)!! (2m - I)!.! 
a 

2P + 3 
mn =nh%ptl(2m)!!(2n--1)!!(4m--1)!!(4n+1)!! I,- (4n+3)(4n+3)h” ‘,+l+ 

4 (p” - mn) -/- 13P + 5% 
+ (4m + 3) (4m + 5) (4~2 + 3) (4n + 5) A4 ‘P+2 + 0 WY] (P = m + n) (3.3) 
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Eq. f3.3) is simplified assuming that m and n are large; for this at first we find asymp- 
totics of integraIsik of the form (3.31 for large k. 

Taking into consideration the first of relationships (1.2) we shall have fork+ M 

I, = 0 [(Zk)! v-(21;+1)] 

Now using Stirling’s formula we obtain the foIlowing asymptotic expression for amn for 
large m, n and h: 

I 
P2P $1 

a mn = O (2hv) 2p+lmam+'l,nan+'l, I 
(3.5) 

In order to investigate the behavior of coefficients amn for small A, a substitution of 
the variable is carried out under the integral in (3.21, writing u/x = U. Then utilizing the 
second property (I.21 of function L(u) and returning to the old variable u we shall have for 
X+0 

a 
(2n)!! (2rn - I)!! 7 

mn = (h $- I) (h)!! (2n - i)l! Jzm+% (+) Jzn+*,* (;) + (3.6) 
0 

Now computing the integral f2], we finally obtain 

We shall prove that for large values of parameter h the infinite system (3.11 is quasi- 
completely regular. For this purpose let us examine the series 

b, = 5 I aik I 
k=O 

(i = 0, 1, . . ., 00) (3.8) 

Making use of the estimate (3.5) it is not difficult to prove that series (3.8) converge for 
any large but finite i, if the parameter 1/ > (2~)~‘. 

?low let us clarify the behavior of sums b, for i + 00. Let us examine Expression 

bi’ = f i i 1 aik ) 
h=O 

w9 

It is clear that b, * + b4) for i + OQ ; in addition, we can state on the basis of the theorem 
of StoIz [4] that 

lim b,’ = lim i 1 aii 1 
ido0 I-Co 

(3.10) 

From here, taking into account the estimate (3.5) it follows without difficulty that ba, = 0 
if A> u-t. 

In this manner sums b, approach 0 when i + ~0, then starting from same i = i, we shall 
have b, < 1 - s, which indicates quasi-complete regularity of the system (3.1) for all x > 
> v-1. In addition to this it is clear that free terms Ri, of system (3.11 are bounded from 
above and for i + 00 approach zero by virtue of uniform convergence of first series (2.2). 

For small values of parameter h the infinite system (3.1) becomes unstable because ac- 
cording to the estimate (3.7) its determinant approaches zero. 

For finding approximate solutions of the infinite system (3.1) it is convenient to take ad- 
vantage of the method of reduction (truncation). In this case the following finite system is 
obtained 

n-i 

“in = z. 'i*"k* + Ri”, (i=O,I,...,n) (3.11) 

The superscript n with quantities z, indicates that solution is carried out for a system 
n + 1 linear algebraic equations obtained by reduction (truncation) of an infinite system. The 
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same index with quantity Ri, indicates that in Eq. (2.7) which determines these coefficients 

it is necessary to carry out tbe summation with respect to k up to n and not up to 00. 

The solution of the system of linear algebraic Eqs. (3.11) is carried out sufficiently sim- 

ply for any n due to the fact that their coefficients form an almost triangular matrix. After 

determination of quantities x,” from system (3.11) the approximate solution of integral Eq. 

(1.3) is found from Eqs. (1.28), (1.17), (1.15) and (1.30), the second Eq. (2.2) and the first 

Eq. (3.2). In this case in (2.2) the summation with respect to i is carried out to n and not to 

00. 
We note that for a given accuracy of the approximate solution of the integral Eq. (1.3) 

and decrease in parameter x it is necessary to increase the quantity of n + 1 equations in 

the reduced (truncated) system (3.11). In fact for h= 0 we shall have on the basis of Eqs. 

(3.7) and the second Eq. (3.2) for coefficients q,,a (A) of series (2.1) 

or applying Stirling’s formula, we find for large m, e m= R. Now, making use of this last 

fact and the asymptotics of Legendre polynomials [ 8 for large m, it is easy to show that 

the series (2.1) for functiou F(C1, V) diverges for X = 0 on the line fi = V. Consequently, on 

decreasing h the convergence on this line will become poorer and for preservation of given 
accuracy of the approximate solution the number of equations in system (3.11) must be in- 
creased. 

In this manner good convergence of the method presented above for approximate solution 

of integral Eq. (1.3) must be expected only for large and intermediate values of parameter 
h. 

For final c1arification of limits of rational utilization of the presented method we briefly 
touch on other methods of approximate solution of integral Eq. (1.3). 

By the method of large h (see 15 and 61) we can obtain the following approximate solution 

of (1.3): (3.13) 

- 

- $3 (2F”- + ‘I? - 1) (1+ q,] dz + O(ha) (q = & 10, P = & 11) 

where I, 
(1.15). 

and lt have the form (3.3) while the function $ * (7) is determined by Expression 

The zeroth term of the asymptotic for the solution of the integral Eq. (1.3) can be found 
for small X in the following manner. 

Let us rewrite the integral Eq. (1.3) utilizing the asymptotic representation of the Bes- 
sel function for large values of the argument (small X) in the form 

{x(P)M(P-+P=ah(r) (1 I‘ / d 1) (3.24) 
-1 

03 

M(~)=~~+cosazdu, x(P)=21)(1PI)v1p h(r)=g(lrl) Vi7 
0 

Now let us change to new variables in the integral Eq. (3.14) according to following For- 
mulas [7 and 81 f+): 

z= A(f)--A(P) 
&h’(l) ’ 

t= h(l)--h(r) 
&h’(1) (3.15) 

*) It is assumed here that function h(r) is strictly monotonous with respect to r for 0 < Irl 4 

6 1. This limitation is not significant because h(r) can always be represented in the form 
of a sum of two strictly monotonous functions. 



1130 V.M. Aleksandrov 

Rack substitutions for small X permit the representation of / p 1 and 1 r 1 in a unique man- 
ner through asymptotic expressions 1 pf = 1 - x 7 + . . . . and 1 r \ = 1 - ht + .... Therefore 
we shall have 

cl& cih 

1 x’(z)A.+++ 5 x’(7)1Ci(Z--)dZ=~[h(l)-hth’(l)] (o<+) 

0 

c:[k(l)-k(O)]@‘(l)]-1, 
(3.16) 

x’ (t) = X(P) 

If it is now taken into consideration that on the basis of second Eq. (1.2) the kernel 
M(x)-86(x) f or 1 1 z -B 00 (6(z) is Dirac’s delta function) and if in the left part of the integral 
Eq. (3.16) the parameter h is allowed to approach zero, then the determination of the zeroth 
term of the asymptotic of the solution of the integral Eq. (1.3) for small x is reduced to the 
determination of the solution for the following integral equation of Wiener-Hopf 

co 1 

I x’(‘)M(r-z)dr=+ [~~I~~~~(~~] (OdE<oo) (3.17) 

0 

Construction of the zeroth term of the asymptotic of the solution for small x by the metho 
od presented in [9] cau also be applied to the solution of the integral Eq. (3.17), however, 
with a different right-hand part. We shall not dwell on this in detail. 

Examination of concrete problems shows that for large x the asymptotic solution of the 
form (3.13) and the zeroth term of the asymptotic of the solution for small x give as a rule 
reliable results for 2 r< h < m and 0 < h ,< %, respectively. 

In the paper [lo] the possibility to find the complete asymptotic for the solution of the 
integral Eq. (1.3) is shown for small h under the assumption that the function.l(u) is mero- 
morphic. An analysis of this complete asymptotic in the exsmination of concrete problems 
apparently would permit to make the matching with the asymptotic solution (3.13) for large 
h . However, the practical construction of the complete asymptotic of the solution for small 
h and its subsequent numerical analysis present significant difficulties. 

In this manner in accordance with everything stated above, the method presented in this 
paper for an approximate solution of integral Eq. (1.3) in our opinion must basically serve 
as the “connecting bridge” between the asymptotic solution for large h of the form (3.13) 
and the zeroth member of the asymptotic of the solution for small A. 

4.. Example. Let us examine the axisymmetric problem of action of a rigid die on an 
elastic layer which is lying without friction on a rigid foundation. Friction forces are assu- 
med to be absent between the die and the layer. Utilizing the integral transfo~ation of Han- 
kel we can reduce the contact problem under examination to a solution of au integral equa- 
tion which in nondimensional coordinates has the form (1.3) t/f(p) is the unknown pressure 
between the die and the layer on the line of contact, h= h/a, g(r) = a-t Ay(r), h is the thick- 
ness of the layer, a is the radius of the contact region, A = G(1 - o)-l, G and cr are elastic- 
ity constants of the layer and y(r) is the settling of points of the boundary of the layer un- 
der the die. The function L(u) can be represented in the form 

oh&- 1 
L(u)= sh 2u + 2u (4.1) 

It is easy to show that function L(u) of the form (4.1) satisfies conditions (1.2); V= 2 in 
this case. It follows from this that for the problem under consideration the infinite system of 
linear algebraic Eqs. (3.1) will be quasi-completely regular for all h> %. The values of con- 
stants u,,(x) entering into system (3.1) can be found for large values of parameter x(x>, 2) 
from the asymptotic Eq. (3.3). For other values of k they can be determined by methods of 
numerical integration from Eqs. (2.4) and (2.6) and the second Eq. (3.2). In this manner for 
h = 1 the following values of constants o,~( A) are obtained: 

am = 0.3447, alo =I 0.1678, aal = 0.008389, am = 0.01313, air = 0.02367, a02 = 0.0002052 

We shall not dwell on the technique of calculations. It is only noted that a significant 
simplification of the computational algorithm was achieved by utilizing tables of the function 
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co 

F(k)= 5 [i--L(u)]Jo(uk)du 
0 

(here L(u) has the form (4.1), and I,-, (x) is Bessel function) and relationships 

F(p, v)=$$F(Z?)@ (R= )/~s+vs-2~vcos9)) 

(4.2) 

(4.3) 

0 

By the method presented in this paper it now is not difficult to obtain an approximate 
solution of the contact problem under examination for h= 1 for a die with one or another 
base. For example, if y(r) g y (plane die), the approximate solution corresponding to the 

case n = 1 in (3.11) has the form 

9 (r) = AT/~ f* - rs)-t,S (~.7680-0.5532 ra) (4.41 

increasing n by one we obtain 

4 (r) = A y/a (1 - $)+ (1.8116-0.7190 F* + 0.1263r’) (4.5) 

Further increase in n does not lead to substantial increase in accuracy of the solution, 
therefore the approximate solution (4.5) can be considered practically exact. This is also 
confirmed by the fact that the difference between values of function G(r) in the form (4.4) 
and (4.5) does not exceed 2.5 % for all 0 4 r < 1. 

The value of the force P acting on the die will also be determined from Eq. 

1 

P=a $(r)dr 
s 
-1 

(4.6) 

For cases (4.4) and (4.5) we obtain P = 8.791 Aya and P = 8.794 Aya, respectively. In 
the paper [ 111 by a completely different method P = 8.80 Aya was obtained for the case nn- 
der examination. 

In this manner the concrete example given and other investigated examples, which are 
not presented for the sake of brevity, show that the convergence of the method presented in 
this paper is sufficiently high for intermediate values of parameter h (K < #I < 2). This meth- 
od can serve as a reliable means for practical solution of integral Eq. (1.3) over the indica- 
ted range of variation in X, providing for certain joining with asymptotic solutions of this 
equation for large and small X. 

5. Reduction of basic integral equation of plane mixed problems 
to a solution of an infinite algebraic system. Let us examine the integral 
equation 

-1 

where the kernel M(t) has the form (3.14) and function L(u) satisfies as before conditions 
(1.2). 

Without destroying generality we shall further assume that functions tp(z) and f(x) are 
even (“even” variant of integral Eq. (5.1)) because the solution for the “uneven’* variant 
can be obtained by differentiation with respect to x of the solution which was construe ted 
for same even case [12] by a specific method. 

Using integral [ 23 

m 

5 
cos u - cos z&t 

l4 
du = In 1 t ] 

0 

we rewrite integral Eq. (5.1) in the form 

(5.2) 

(I x I d 1) 

(5.3) 
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cos ut - cos u 
du 

u 

Based on properties (1.2) of function L’(u) it is not difficult to show that function F(t) is 
continuous together with all its derivatives for all - 00 < t < DC, 

We shall seek solution Q (0 of Eq. (5.3) in class L ( - (1.1). Then for h + ~0 the inte- 

gral Eq. (5.3) degenerates into the following: 

1 

c [ cpo(Q --n ‘y! - F (0)] de = n,f (r) (1x161) (5.4) 
‘1 

It is known that the contact problem for an elastic half-plane is reduced to such an equa- 
tion. Solution of this integral equation in the form of singular integrals is most common. In 

our view the solution not containing singular inte rals is more convenient for practical ap- 

plication. This solution was first found in paper I! 131. 

Without dwelling on details we note that such a solution can be obtained quite easily by 

the method outlined in Section 1 for the determination of integral Eq. (1.9) and has the form 

1 1 

P=1190Wd4= c In 2h -! F (0) 31 ig (5.5) 

We can show, but we shall not dwell on it in detail, that solution (5.5) of the even vari- 

ant of the integral Eq. (5.4) has a meaning for at least f(x) E H”( - 1, 11 and CL> )/. 

Further we shall assume that f “(x) is bounded for zE [- 1, I]. Then the first Eq. (5.5) 

can be rewritten in the form 

The solution of integral Eq. (5.4) for th 
from (5.6) as indicated above (*). 

e uneven variant can be obtained very easily 

‘1 We note that the solution of integral Eq. (5.4) for the uneven variant can also be found 

by a method different from the one presented in [12]. In fact, if both sides of Eq. (5.4) 

are differentiated with respect to z and then if in the obtained relationship it is taken in- 

to account that functions q(O) ( z and f(z) are even or uneven, this relationship can be 1 
presented in the respective form 

1 

I s dt = ni’ (x) x-l, ? w (6) 

-1 

\ + dE = a.cg’ (2) (lxl61) (i) 
-1 

From this it is seen that 

1 

cpo(~)=~~o(~), f'(x)=%?'(z) (lx I< 11, P=M= 
s 

Wa(E)dS (ii ) 
-1 

In this manner solution of integral Eq. (5.4) for the uneven variant is obtained if in 
Eq. (5.6) which satisfies first Eq. of (i) substitutions are performed accordin to (ii). To 

determine the value of M both sides of second Eq. of (i) are multiplied by $7z 

and we integrate from - 1 to + 1, then rearranging integrals in the left part of the obtai- 

ned relationship and taking the inner integral, we find 
1 

ME_ 
s 

g' (x) 1/l - x3 ds 

-1 
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On the basis of Eq. (5.6) the following theorem can be proved in a manner which is ana- 
logous to the procedure in Section 1. 

Theorem 4. If f “(x) is bounded then a. (x) has the form 

a@ (5) = 0 (z) (1 - &‘z (5.7) 

where o (xl E H %f- 1, If, i.e. a,(x) E L (- 1, 1). 
The following more general theorem also applies. 
Theorem 5. If function f (xl is such that its (n + 2) derivative is bounded for x E[- 1, 

11, then function &,(z) has the form (5.7) where o”(x) E Hs (-1, 1). 
We shall now seek the solution of integral Eq. (5.3) from the class L(- 1, 1) in the form 

CE (II = %A~) i- 91(3 (5.8) 

where qo(x) is the solution of integral Eq. (5.4). For the correction function %1(x) we ob- 

tain the integral Eq. 

1 

- '~i(f)Iil~ 
\ 
A 

d~=~f,(~)+ ~~~(~~~[~j~~ ftxlG~I 

(5.9) 

i,(x) = f i cpom ,F-(&, --F(c+E 
-1 

We note that by virtugof properties of function F(t) pointed out above and the condition 
a (x) E A(-- I, 1) or by taking into account of Theorem 4, r+ t(z) E L (- 1, l), the entire 
right side of the integral Eq. (5.91, as function of z E [- 1, 11, is continuous with all deri- 
vatives. 

Then on the basis of Theorem 5 we can conclude that the general solution of integral 
Eq. (5.9). if it exists in L(- 1, 11, for any value h E (0, oo) has the form 

al (z) = 52 (z) (1 - q-+ (5.10) 

where n(x) with all derivatives is a continuous function for x E. [- 1, 11. 
Now let US represent the function F(t) of the type (5.3) in the form of the following dou- 

ble series in Chebyshev polynomials: 

(5.11) 

Functions f*(x) and n(x) entering into Eqs. (5.9) and (5.10) are also expanded in series 

I, (sf =z: 2 QT,, (21,. 
i=O 

s-J(z) = $j si?‘&q (5.12) 
i=O 

By virtue of above noted properties of functions F(t), f*(r) and Q (xl, series (5.11) and 
(5.12) converge uniformly, respectively to F(t) for all variables (z, 0 e[- 1, l] and any 
arbitrary value of parameter h e (0, C-J), to f+(z) and Q(X) for all values in the interval 
-l&x,<l. 

Utilizing known orthogonality property of Chebyshev [A polynomials, we obtain for coef- 
ficients clf( h) of the series (5.11) Expression 

(5.13) 

We note that in the following only values czm, 2n (A) will be needed, because according 
to assumption, functions v(r) and f(z), and therefore also functions Q(X) and f+(n), are 
even. 

Substituting into (5.13) Expression F(t) in the form (5.3) and utilizing integral (21 
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we obtain another equation for cm 2n (h) , 

(5.14) 

coo = 
[I - L(u)] JO” (u/h) - cos u du 

u (5.15) 

Let us proceed to determination of coefficients R, *. 
(5.11) we obtain 

Utilizing the second Eq. (5.9) and 

(5.16) 

n=o -1 n=o 

For evaluation of integrals ‘u, we multiply both parts of the integral Eq. (5.4) term by 

term by (1 -x2)-% T, (z)dx and integrate with respect to z from - 1 to 1. Then rearrang- 
ing integrals in the left part of the obtained relationship and taking advantage of Eq. (2.7) 
of the paper (11 we find 

Y. = R, [MB+ - P (0)1-r, Yn== TSR, (5.2 7) 

2Ro for u TT 0 

= R, for la> 0 

We note that quantities R, are coefficients of expansion of function f(x) in series with 

respect to Chebyshev polynomials of the form (5.12). 

Finally, we obtain a relationship for determination of coefficients S, in the second Eqs. 
(5.12). Substituting into integral Eq. (5.9) functions q,(&, f,(z) and F(t) in the form (5.10) 

to (5.12) and evaluating integrals (it is necessary to take advantage of Eq. (2.7) of the pa- 

per [ 11 and of the known orthogonality property of Chebyshev polynomials), we obtain a re- 
lationship the left and right parts of which contain series in Chebyshev polynomials. Equa- 
ting coefficients of both parts for polynomials of the same index we obtain an infinite system 
of linear algebraic equations of the form (3.1) for determination of S,, where 

x0 = SO In 2h, “4 = Sf (2i)_I, uio = czi, o(ln2h)-‘, Uik = ICC& ph. , (5.18) 

For large values of parameter h we can obtain an asymptotic representation of the form 
(3.3) for coefficients of the infinite system a,* in a manner analogous to what was done in 
Section 3. If in addition it is assumed in this representation that i and k are large, we shall 
have 

(5.13) 

In analogy to what was presented in Section 3, asymptotically for small h we can obtain 
alk = 0 (i f k) and a,* = 1. 

Now with respect to infinite system (3.1), (5.18), the same conclusions as in Section 3 
may be drawn. Namely, for all A> ~-1 the system will be quasi-completely regular. Its free 
terms R, + are bounded from above and for i + DQ they approach zero by virtue of uniform con- 
vergence of the first series (5.12). For small values of parameter x the infinite system be- 

comes unstable. 
For finding of approximate solutions of infinite system (3.1), (5.18) it is convenient to 

take advantage of the reduction method. The reduced (truncated) system has the form (3.11). 
its coefficients, as can be easily noted, form an almost triangular matrix. This makes it 
considerably easier to obtain concrete results. 

with decreasing parameter A convergence of series (5.11) on the line {= x becomes poorer 
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and in order to preserve given accuracy of the approximate solution, the number of equations 

n + 1 in the reduced (truncated) system must be increased. Consequently, good convergence 
of the method presented in this Section for solution of integral Eq. (5.1) must be expected 

only for large and intermediate values of parameter A. 
As in Section 3 we shall briefly dwell on other methods of approximate solution of inte- 

gral Eq. (5.5). 
For large values of parameter x it is possible to obtain an asymptotic solution determi- 

ned by Eqs. (2.9) and (2.10) in the paper [14]. As a rule it can be used for 24 x < Q). 
For construction of the asymptotic for the solution of the integral Eq. (5.1) for small x 

we represent the integral equation in the form of a system of three integral equations which 
are equivalent to it(*) 

dE = nf (2) +-<[I3 (7) - W] M (E+) dt 
---do 

--VP3 M 1 

r v(!gM(‘+E=rt+) (--<<Z-=00) 
--Co 

under the condition 

cp (4) = P (F) + P (9) - v (5) 

(--lbr<-) 

(5.20) 

(--<<<I) 

(5.21) 

where the function f(x) is continued in an arbitrary manner in the region - 00 < z < - 1 and 
14 z < 00 with preservation of sufficient smoothness. 

The solution of the last integral Eq. (5.20) can be obtained easily through application of 
the theorem on convolution for a Fourier transform. 

The first two inte gral Eqs. (5.20) are reduced to one through a change of variables 

co 

s 
p (z) h4 (,‘c - t) dz = + f (1- At) + 

0 

The asymptotic solution for small h of the integral Eq. (5.22) can be found by the method 
of successive approximations. Here, at each step it is necessary to find the solution for one 
and the same integral equation of Wiener-Hopf, but with different right-hand sides. 

The zeroth approximation corresponding to the zeroth term of the asymptotic for the solu- 
tion of the integral Eq. (5.1) for small k is found from Eq. 

co 

c 
Po(z)M(z-t)dr=- P<t<~) 

b 
; f (1 - w (5.23) 

Examination of concrete problems shows [16 and 171 that, as a rule, the zeroth term of 
the asymptotic of the solution for small h reliably matches with the asymptotic solution for 
large x [ 141, thus providing a complete solution of the problem. 

*) In the papers [lo and 151 a different approach to the construction of the asymptotic of in- 
tegral Eq. (5.1) is presented for small h under the assumption that function L(u) entering 
into kernel M(t) is meromorphic. 
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In those cases where matching is not achieved with required accuracy, we may use the 
approximat8 solution for muaIl x constructed from Eq. (5.21) on the basis of first (or higher) 
approximation of solution of Eq. (5.221. 

There is also another possibility, in our opinion even more convenient, i.e. to utilize 
the method of approximate solution of integral Eq. (5.1) presented in this Section, as a 
“connecting bridge” between the asymptotic solution for large h and the zeroth term of the 
asymptotic for small X. 
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